top of page

Implementation of Single-Tab Electrodes for Bioimpedance Spectroscopy Measures

ABSTRACT

Background: Bioimpedance spectroscopy (BIS) demonstrates proficiency in early identification of breast cancer treatment-related lymphedema (BCRL) development. Dual-tab electrodes were designed for consistent and easy electrode placement, however, single-tab electrodes positioned to mimic dual-tab placement on the body may make BIS technology more accessible in community hospitals and outpatient settings. The purpose of this study is to evaluate use of single-tab electrodes for BIS measurements and assess whether single-tab electrodes provide consistent BIS measurements in controls and patients with BCRL. Methods and Results: Upper limb BIS ratios were obtained using ImpediMed L-Dex® U400 in controls (n = 13; age = 23-75 years; 9 repeated measurements) using dual-tab and single-tab electrodes. BCRL patients (n = 17; Stage = 1.65 ± 0.49; number nodes removed = 16.3 ± 7.7; age = 50.9 ± 10.6 years; age range = 33-77 years) and healthy controls (n = 19) were evaluated to determine if single-tab electrodes provided discriminatory capacity for detecting BCRL. Intraclass correlation coefficients (ICC), linear mixed-effects models, Wilcoxon rank-sum tests, and linear regression with two-sided p-values <0.05 required for significance were applied. Single-tab electrodes were found to be statistically interchangeable with dual-tab electrodes (ICC = 0.966; 95% confidence interval = 0.937-0.982). No evidence of differences in single-tab versus dual-tab measurements were found for L-Dex ratios (p = 0.74) from the linear mixed-effects model. Repeated trials involving reuse of the same electrodes revealed a trend toward increases in L-Dex ratio for both styles of electrodes. Single-tab electrodes were significant (p < 0.0001) for discriminating between BCRL and control subjects. Conclusion: Findings expand upon the potential use of BIS in clinic and research settings and suggest that readily available single-tab electrodes provide similar results as dual-tab electrodes for BIS measurements.

 
 
 

Recent Posts

See All

Comments


This is not an official site of an affiliated institution.

Copyright © as soon as material appears to the present. Rachelle L. Crescenzi, All rights reserved.

SALT Lab is located at the Fontaine Research Park at the University of Virginia, Charlottesville VA, USA

saltlab at uvahealth.org

bottom of page